Highest vectors of representations (total 1) ; the vectors are over the primal subalgebra. | \(g_{22}\) |
weight | \(\omega_{1}\) |
Isotypical components + highest weight | \(\displaystyle V_{\omega_{1}} \) → (1, 0, 0, 0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | \(W_{1}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}+2\omega_{3}\) \(\omega_{4}\) \(\omega_{2}-2\omega_{3}+2\omega_{4}\) \(\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{2}+2\omega_{4}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{1}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{4}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}+\omega_{4}\) \(\omega_{1}-\omega_{2}+2\omega_{3}-2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{1}+2\omega_{3}-2\omega_{4}\) \(\omega_{1}-\omega_{4}\) \(-\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{4}\) \(\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{3}+2\omega_{4}\) \(-\omega_{2}+2\omega_{3}-\omega_{4}\) \(-\omega_{1}+2\omega_{2}-2\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(0\) \(\omega_{2}-2\omega_{3}+\omega_{4}\) \(\omega_{3}-2\omega_{4}\) \(\omega_{1}-2\omega_{2}+2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}+\omega_{4}\) \(\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+\omega_{4}\) \(\omega_{1}-2\omega_{3}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}+\omega_{2}-2\omega_{3}+2\omega_{4}\) \(-\omega_{1}+\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{2}+2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-2\omega_{4}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-2\omega_{4}\) \(-\omega_{3}+\omega_{4}\) \(-\omega_{2}+2\omega_{3}-2\omega_{4}\) \(-\omega_{4}\) \(\omega_{2}-2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | \(\omega_{1}\) \(-\omega_{1}+\omega_{2}\) \(-\omega_{2}+2\omega_{3}\) \(\omega_{4}\) \(\omega_{2}-2\omega_{3}+2\omega_{4}\) \(\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{2}+2\omega_{4}\) \(\omega_{2}-\omega_{3}\) \(-\omega_{1}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}\) \(\omega_{2}-2\omega_{4}\) \(-\omega_{1}+\omega_{3}\) \(\omega_{1}-\omega_{3}+\omega_{4}\) \(\omega_{1}-\omega_{2}+2\omega_{3}-2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}\) \(-\omega_{1}+2\omega_{3}-2\omega_{4}\) \(\omega_{1}-\omega_{4}\) \(-\omega_{2}+\omega_{3}+\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{4}\) \(\omega_{1}+\omega_{2}-2\omega_{3}\) \(-\omega_{3}+2\omega_{4}\) \(-\omega_{2}+2\omega_{3}-\omega_{4}\) \(-\omega_{1}+2\omega_{2}-2\omega_{3}\) \(2\omega_{1}-\omega_{2}\) \(0\) \(0\) \(0\) \(0\) \(\omega_{2}-2\omega_{3}+\omega_{4}\) \(\omega_{3}-2\omega_{4}\) \(\omega_{1}-2\omega_{2}+2\omega_{3}\) \(-2\omega_{1}+\omega_{2}\) \(\omega_{1}-\omega_{2}+\omega_{4}\) \(\omega_{2}-\omega_{3}-\omega_{4}\) \(-\omega_{1}-\omega_{2}+2\omega_{3}\) \(-\omega_{1}+\omega_{4}\) \(\omega_{1}-2\omega_{3}+2\omega_{4}\) \(\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}\) \(-\omega_{1}+\omega_{2}-2\omega_{3}+2\omega_{4}\) \(-\omega_{1}+\omega_{3}-\omega_{4}\) \(\omega_{1}-\omega_{3}\) \(-\omega_{2}+2\omega_{4}\) \(-\omega_{1}+\omega_{2}-\omega_{3}\) \(\omega_{1}-2\omega_{4}\) \(-\omega_{2}+\omega_{3}\) \(-\omega_{1}+\omega_{2}-2\omega_{4}\) \(-\omega_{3}+\omega_{4}\) \(-\omega_{2}+2\omega_{3}-2\omega_{4}\) \(-\omega_{4}\) \(\omega_{2}-2\omega_{3}\) \(\omega_{1}-\omega_{2}\) \(-\omega_{1}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | \(\displaystyle M_{\omega_{1}-\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{3}+2\omega_{4}} \oplus M_{\omega_{2}-2\omega_{3}+2\omega_{4}}\oplus M_{\omega_{1}-2\omega_{3}+2\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}+\omega_{4}} \oplus M_{\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{3}} \oplus M_{\omega_{1}-2\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}+2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}} \oplus M_{-\omega_{3}+\omega_{4}}\oplus M_{\omega_{2}-2\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}+2\omega_{3}} \oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus 4M_{0}\oplus M_{\omega_{1}-\omega_{2}} \oplus M_{\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}-2\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}-\omega_{4}} \oplus M_{\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+2\omega_{3}-2\omega_{4}} \oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}-2\omega_{3}} \oplus M_{\omega_{2}-2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{4}}\oplus M_{-\omega_{4}} \oplus M_{\omega_{2}-\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{3}-2\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{3}-2\omega_{4}} \oplus M_{\omega_{3}-2\omega_{4}}\oplus M_{\omega_{2}-2\omega_{4}}\oplus M_{\omega_{1}-2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-2\omega_{4}}\) | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | \(\displaystyle M_{\omega_{1}-\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{4}}\oplus M_{-\omega_{3}+2\omega_{4}} \oplus M_{\omega_{2}-2\omega_{3}+2\omega_{4}}\oplus M_{\omega_{1}-2\omega_{3}+2\omega_{4}}\oplus M_{-\omega_{2}+\omega_{3}+\omega_{4}} \oplus M_{\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{4}}\oplus M_{\omega_{1}-\omega_{3}+\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{3}} \oplus M_{\omega_{1}-2\omega_{2}+2\omega_{3}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}}\oplus M_{\omega_{1}}\oplus M_{2\omega_{1}-\omega_{2}} \oplus M_{-\omega_{1}+\omega_{2}-2\omega_{3}+2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}+\omega_{4}} \oplus M_{-\omega_{3}+\omega_{4}}\oplus M_{\omega_{2}-2\omega_{3}+\omega_{4}}\oplus M_{-\omega_{1}-\omega_{2}+2\omega_{3}} \oplus M_{-\omega_{1}+\omega_{3}}\oplus M_{-\omega_{2}+\omega_{3}}\oplus M_{-\omega_{1}+\omega_{2}}\oplus 4M_{0}\oplus M_{\omega_{1}-\omega_{2}} \oplus M_{\omega_{2}-\omega_{3}}\oplus M_{\omega_{1}-\omega_{3}}\oplus M_{\omega_{1}+\omega_{2}-2\omega_{3}}\oplus M_{-\omega_{2}+2\omega_{3}-\omega_{4}} \oplus M_{\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+\omega_{3}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{4}}\oplus M_{\omega_{1}-\omega_{2}+2\omega_{3}-2\omega_{4}} \oplus M_{-2\omega_{1}+\omega_{2}}\oplus M_{-\omega_{1}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{3}}\oplus M_{-\omega_{1}+2\omega_{2}-2\omega_{3}} \oplus M_{\omega_{2}-2\omega_{3}}\oplus M_{-\omega_{1}+\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-\omega_{4}}\oplus M_{-\omega_{4}} \oplus M_{\omega_{2}-\omega_{3}-\omega_{4}}\oplus M_{-\omega_{1}+2\omega_{3}-2\omega_{4}}\oplus M_{-\omega_{2}+2\omega_{3}-2\omega_{4}} \oplus M_{\omega_{3}-2\omega_{4}}\oplus M_{\omega_{2}-2\omega_{4}}\oplus M_{\omega_{1}-2\omega_{4}}\oplus M_{-\omega_{1}+\omega_{2}-2\omega_{4}}\) |